Sumu

. Spectral + FM synthesis
with spatialization

MADRONA LABS

This manual is released under the Creative Commons Attribution 3.0
Unported License. You may copy, distribute, transmit and adapt it, for
any purpose, provided you include the following attribution:

Sumu and the Sumu manual by Madrona Labs.
http://madronalabs.com.

Version 1.0 (prerelease), May 2024. Written by George Cochrane.
Mlustrated by David Chandler.
Typeset in Adobe Minion using the TgX document processing system.

Any trademarks mentioned are the sole property of their respective
owners. Such mention does not imply any endorsement of or associ-

ation with Madrona Labs.

Introduction

“Little by little you must create a fog around yourself ... until nothing
is any longer for sure, or real.”
-Carlos Castaneda

Sumu is a software instrument that combines additive synthesis, FM,
and fine-grained spatialization in an easy-to-use semi-modular instru-
ment.

Each Sumu voice is made up of 64 independent pairs of oscillators
with FM and noise. Every pair has its own lo-passable gate and its own
motile position in sonic space. This gives you lots of sonic potential, but
it may sound like a lot to wrangle.

“I guess that stuff s just for tweed-jacketed CS majors, or film composers
with DSP-powered magic boxes,” you might say. You swirl some roiboos
dregs in an earthenware mug. It seems time is always moving on. There

are arrows to loose and ears to feed, and now is not the moment.

For more on the theory behind Sumu, see
Chapter 1, “Parallel Pathways in Perpetuity”

Luckily, Sumu gives you three easy ways to put all of this power to

work.

o PARTIALS module - Turns interpreted audio into a map of pitch, level,

and noise data over time, for each partial to follow.

o ENVELOPES module - One ADSR envelope per partial, with individual
triggering and global shaping.

o PULSES module - One probability gradient controlling two shape-
blasters for each partial, with strong individuality.

This makes for an instrument that lets you scratch your additive itch

to great effect, without getting lost in the fog.

A Quick Overview

Sumu’s interface has four main sections, from top to bottom:

o The header section, where you’ll find the patch menu, along with the
version and registration status of your copy of Sumu.

o The shapes section, where control data (and more) flows from the
INPUT, PARTIALS, ENVELOPES, and PULSES modules.

o The patcher section, where connections between modules are made

and broken.

o The audio section, where signals are viewed (SCOPE) and sound is cre-
ated (OSCILLATORS), controlled (GATES), placed in SPACE, and colored
(RES).

However, there are always further secrets enshrouded in the mist.
Let’s take a stroll through the forest.

Fog Farmer’s Almanac

If Sumu is your first foray into anything modular, or your first bite of the
additive apple, let this manual be your guide. Whatever your perspec-
tive, we mostly hope that you have fun exploring this new instrument,
making sounds you've never heard before.

This manual is arranged in five sections:

o Parallel Pathways in Perpetuity Get a little background on the con-
cepts behind Sumu.

o Getting to Know Sumu Find out how Sumu fits into your system, and
learn to use the various types of controls and connections that you’ll

find.

o Sumu: Module by Module Take a guided tour through the different
parts of Sumu, module by module.

« Vutu: Your Audio Cartographer Explore turning audio into partials

maps for use in Sumu, using the included desktop app.

1 Parallel Pathways in Perpetuity

Let’s talk a little about Additive Synthesis. What's it all about? Given how
uncommon it is, it’s probably easier to think about how it diverges from

more frequently used forms.

o Subtractive Synthesis: Create an unceasing, unholy racket, then pare
it down to something useful by changing volume and tone over time.

o Frequency Modulation Synthesis: Bash tightly controlled waveforms

into one another until they agree to form the sound you want.

o Additive Synthesis: Build your perfect world of sound, molecule by
molecule, millisecond by millisecond.

Stated that way, additive sounds pretty genteel in comparison, non?
But maybe a bit of time-waster, if you don't tend toward micromanage-
ment. And what’s this "molecule” business, anyway?

Well, you may have heard it said that if you look close enough, ev-
ery sound is made of plain old sine waves. Even the noisiest scronching
wail looks like countless little interacting wiggles under the microscope,
because physical objects, air, and even oscillators are (in a word) elastic.

Nothing goes from 0 to 100 in an instant; there is always a swing.

“I say, I say, I do say... Where there’s a swing, there’s a sine”
-Foghorn Synthorn, Esq.

So the story goes, if we know (or can guess) the frequency makeup
of a given sound over time, we can simply rebuild it using lots of sine
wave oscillators tuned across the frequency spectrum, controlling their
amplitudes with sophisticated envelopes.

Early additive synth systems dared you to do just that; exhaustively
plot out volume relationships for dozens (or hundreds) of partials over
time. Get it just right, and you could have a startling true-to-life flugel-
horn under your fingers, free of sampler-esque pitch and time artifacts.

Get it wrong (or simply give up after realizing you like to make mu-
sic, not spreadsheets) and it’s time to pull up someone else’s preset again.
What a bore.

Later entrants into additive synthesis dreamed up lots of clever ways
to wrangle partials en masse—everything from big touch-sensitive LED
grids, to interpreting images as spectrograms, even analyzing and resyn-
thesizing audio.

Sumu focuses on the latter strategy, letting you creatively process and
analyze your own audio using the Vutu desktop app, then bring the re-
sulting analyses into the PARTIALS module to control the multitudinous
sound-atoms inside.

And if that’s all it did, thatd be fine. Not unique maybe, but use-
ful. Where Sumu diverges from other such additive instruments is in
its modularity, and the peculiar and well-situated array of modules on
offer.

You might think, "Modular? My goshdarned shoes have patch points
these days. What's so special about that?” Well...

Incidentally, if your shoes DO have patch
points, please send us your cobbler’s number.

The Widest Highway

When you patch between many of the modules in Sumu, that cord
doesn’t carry just one signal, or even one signal per active voice. It in-
stead carries 64, one for each partial. That also means that many of the
modules actually act as 64 independent modules, one for each partial
across the spectrum. This means 64 envelopes, pulse generators, oscil-
lator pairs, gates, even a 64-channel oscilloscope.

Hit one of those mega-modules with a simple signal (like the pitch
or gate output from /NPUT), and all 64 channels move as one. Con-
nect a complex signal instead (such as the pitch out from PARTIALS), and
suddenly, things go kaleidoscopic. Every channel of the module reacts
individually to the control data for its own partial.

To put that in perspective, that means you could:

1. Load up your favorite rooster’s best crow as a partials map in PAR-
TIALS

2. Patch its noise output into SPACE’s speed input. Now each oscillator
pair shifts its place in space a little quicker when its corresponding

playhead in PARTIALS passes a noisy spot in the cock-a-doodle-doo.

3. Patch its amp output into PULSES’ bpm input, and the pulse outs into
GATES (set to lo-pass). Now, the two shape-generators for each par-
tial run faster when that part of the sound gets louder, and the unique
pulses from each one ripple through the timbre of its corresponding

oscillator pair.

Sound a little nuts? Well, it is. But only on electronic paper. Dive in,
and you’ll catch the scent quickly.

Fire all the envelopes. Tune all the oscillators.

Think locally, patch multifariously.

2 Getting to Know Sumu

This chapter shows you this instrument fits into your computer ecosys-
tem, and gives you a working knowledge of the various types of controls
you’'ll find throughout. Some of them act just like you would expect, but
some have more personality than that.

First Things First

Sumu is a software plug-in that comes in both VST and AU formats. A
plug-in does not run on its own. It runs within an application (known
as a host or Digital Audio Workstation). Some good hosts include Able-
ton Live (on Mac and Windows), Logic and Numerology (Mac), and FL
Studio (Windows). All of these hosts provide easy ways to use plug-ins
like Sumu.

Every host handles instruments a little differently, so for more infor-
mation on using instrument plug-ins in your own system, please see the

user guide that came with your DAW.

If you run into any trouble when installing or
operating Sumu, please search our forums at
http;//madronalabs.com or, if that fails, send
your questions to support@madronalabs.com.
We (and the growing community of Sumu
users) are here to help you.

An Annotated Map of Sumu

This section gives a quick description of each of Sumu’s areas, to give

you a little familiarity before we go deep. For in-depth information on
each module, control, and feature, see Chapter 3, “Sumu: Module by
Module”

1. Header

This area’s most vital item is a nice big preset selection menu with
back and forward buttons for fast switching. On the right, you can
find your license information as well as the plug-in format for the

» »

current instance of Sumu. Click the ”.”” icon to access global set-

tings, which set the way Sumu displays info and responds to MIDI &
OSC.

2. INPUT

This module receives note and control signals you send Sumu over
MIDI or OSC, and makes them available to the rest of Sumu’s devices.

12

If you have experience with CV-controlled synths, you can think of
the Key module like a MIDI-CV converter box that outputs digital
gates and “control voltages”

. PARTIALS

This module is one of the labor-saving tools Sumu offers. It takes au-
dio (analyzed by the included Vutu app) and interprets it as a map of

pitch, amplitude, and noisiness over time, for all 64 partials to follow.

. ENVELOPES

This module creates discrete time-based control vectors for each par-
tial, commonly used to affect volume or timbre as notes are struck
and/or held. While these envelopes are a fairly standard ADSR
(Attack-Decay-Sustain-Release) type, there are tricky ways to shape
them as a group, and a 64-channel trigger input that lets you get cre-
ative about firing them off.

. PULSES

This module provides two pulse generators per partial which always
trigger in sync (each with its own timbral, rhythmic, and dynamic
options). Trigger rate, probability, and density can differ for every
partial, based on control inputs and a probability generator which
applies shaped gradients of likelihood across the spectrum. This lets
you make modulations that can be focused on a certain frequency
range. You could also, for example, use the pulses to trigger all of the
ENVELOPES at different times.

. PATCHER

The Patcher is the dark central strip in the plug-in window, sur-
rounded on all sides by the Modules. The patcher lets you connect

13

signals from the outputs of modules to the inputs of modules. It is
notable that multiple inputs can be fed from a single output, or mul-
tiple outputs to a single input. We think this is way more powerful

and easy to use than a ton of menus.

7. SCOPE

With multi-channel signals spurting forth from every modulator
output, it’s easy to lose touch with what’s going on. This module
shows you an evolving graph of every channel from the output you
patch in.

8. OSCILLATORS

This module hosts Sumu’s oscillator bank (believe it or not). One
carrier-modulator pair (plus noise) form the audible heart of each
partial. All the juicy parameters thereof can be controlled individ-
ually per partial, under the influence of beefy 64-channel control

signals from the modules above.

9. GATES

If you're familiar with modular synth jargon, this module can be de-
scribed as 64 VCAs (Voltage Controlled Amplifier/Attenuators) or
LPGs (Low Pass Gates), depending on the mode you choose. Either
way, GATES works in concert with signal sources like ENVELOPES and
PULSES to change the level (VCA mode) or the level and timbre (LPG

mode) of the input signals.

10. SPACE

This module gives each of our 64 partials its own place across the

sound field; both a home spot it tends to hang near, and a certain

14

tendency to meander, according to the vector field you select. Speed

and accuracy of movement are variable on a per-partial basis.

11. RES

This module is inspired by the Resonators section of the Polymoog
synthesizer. It's simply a state-variable filter, with limited bandwidth
and a bit of distortion to give it a little glow. In Sumu, a synth we
could otherwise describe as “very digital,” it’s nice to have a built-in

way to add a different flavor.

12. ouTPUT

The OUTPUT module is where all of your audio comes together be-
fore venturing out into the wilds of your DAW. It gives you control
over the final output level, with a handy limiter to rein in roaring mo-
ments. It also contains a handy oscilloscope, which gives you visual
feedback about the sounds youre making.

Presets

We labored heavily to make Sumu simple and inviting to use, but flip-
ping through preset sounds is a good way to hear what it can do, and
see how it's done. Sumu has room for both user and factory presets. The
user area is where you’ll keep your own creations, and where we put
contributions from other Sumu users that we include. The factory pre-
sets are meant to be a small and well-rounded set of sounds that you’ll

come back to often.

15

Types of Presets

16

keys

The bread and butter of patches. Or the tofu on rice, if you prefer.
When you want to start making a tonal song, head to this section
and you're guaranteed to find patches that play notes in tune for you.

Electronic and acoustic pianos are here; strings and things too.

pads

Like keys in that they play in tune, but are generally a bit more drawn-
out. When playing a pad, you’ll need to hold down the keys for a
while for the sound to develop, and then it'll usually go someplace

interesting.

drones

Like pads but farther out, and not always tonal.

sequences

These are sounds that could become a whole song; explorations, of-
ten with the pulses module, sometimes rhythmic. You know, the
kind of thing that often comes out of a modular synthesizer. But in

Sumu.

machines

Like sequences, but these presets may start making sounds whether
or not you have a note held down. To avoid this being super confus-

ing for the uninitiated, all presets like this are in this category.

environments

Here we are, deep in Sumu-land. Hold a note and just wait... Partials
may come and go. The experience of space is strong here. Flocks of
weird creatures, synthetic streams or space station rooms. Is filmic

ambiance your goal? You're in the right place.

e percussion

Not what Sumu is known for, but it has some good percussive en-
ergy when it wants to. Cowbells, filter thwips, floppy bass drums
and anything you could make a beat with go here.

o techniques

Instructional patches that teach you how to do one thing or another,

with a few clearly intentional patch cords.

e vocals

Sumu does cool stuff with vocals, so we made a whole category to
suit. Hear and play with our patches for fun, or drop in your own
vocals in place of the partials sources here to start lofting your own

productions into space.

Using Dials

So, youd like to go beyond the presets? Of course you would! Meet dials.
They’re found in every module. Like knobs on any piece of gear, dials
are mainly good for two things: manipulating signals and giving you
information. However, whereas most knobs inform you merely about
a single unchanging value they’ve been adjusted to, Sumu’s dials act as

tiny signal viewers as well. This means they not only show you the value

17

you've adjusted them to, they also show you the values they’re being
pushed and pulled to by incoming modulation signals.

To modulate a dial’s signal, just make a connection to the dial’s sig-
nal input in the patcher. Every signal that can be modulated has a signal
input next to it—this is how Sumu can provide so much control with-
out using menus. Signal inputs are like small dials without displays, or
regular knobs, if you like. We'll cover the patcher and signal inputs thor-
oughly in a later section.

To set the position of a dial, you can do any of the following:

o Clickin the dial’s track (the dark area within it) to set the value to the
click position. While still holding, drag up and down to adjust the

value.

« Hover over a dial and use the scroll wheel to fine-adjust the posi-
tion. At slow speeds, each click of the scroll wheel corresponds to
the smallest currently visible increment of the dial. Scrolling faster
accelerates the change.

o Click and drag vertically on a dial outside the track area to adjust the

dial from the current position.
o Double-click or command-click a dial to return it to its default value.

Holding down the shift key before any of these motions are done will
modify the motion to be a fine adjustment. This allows particular values
to be set precisely.

Detents

Some dials, such as 0SCILLATORS carrier pitch, have detents. Detents are

useful default positions. For example, the pitch knob has a detent at an

18

A note in each octave (110Hz, 220 Hz, 440 Hz...) to keep the oscillator
tuned to MIDI notes. Normal use of these dials makes them stop only
on the detents. By shift-clicking a dial with detents, or holding down
shift and dragging it, you can adjust it to any position in between the

detents.

Numeric Displays

All of Sumu’s dials show their current value both in the (often changing!)
pointer position, and in a numeric display below each control. The nu-
meric display does not show the modulated value, only the center value
that you have set on the dial itself. The numeric displays are not directly
editable, so just get that crazy idea out of your head.

The Show numbers toggle in the global settings on the header lets
you turn off all the numerical displays, if youd rather not see them.

Dial Scales

While many dials are linear (the change per degree from high to low is
constant), some dials have logarithmic scales where the change is much
larger as the value gets higher. This was done in cases in which a loga-
rithmic scale matches the changes you perceive better than a linear one,
as in oscillator pitch, for example.

In a logarithmic scale, equal movements of the mouse in different
positions on the dial will produce differently-sized changes. For exam-
ple, 55, 110, 220 and 440 Hertz are all equally spaced apart on the pitch
dial in the 0SCILLATORS module.

We tried it the other way, and all those flashing

numbers were a bit much.

19

Using Buttons and Switches

There’s not a lot to say here, only that switches need only be clicked to
be toggled (you'll see the little dark switch move back and forth) and the

same goes for the buttons. Dark is off, bright is on.

Using the Patcher

The patcher is the grand connector. With it, you’ll bring together the
tools Sumu offers, to do really fun stuff. The patcher is both the place
from which much of the joy of working with Sumu springs, and the part
of Sumu most likely to confuse you at first.

The Patcher is the large dark central area surrounded by all the mod-
ules. It lets you patch signals from the outputs of modules to the inputs
of modules by drawing patch cords. Each patch cord has an arrow on it
that shows which way the signal is flowing. Note that though signals
tend to flow down, from ENVELOPES to GATES, for example, this isn’t
always the case, because inputs can be found on both the top and the
bottom of the patcher.

There are no signals underneath the patcher that can flow up, but
signals from above the patcher can go to other modules on top. And
remember, modulation and audio signals are both the same thing, just
made up of different frequencies, so it’s perfectly fine to experiment by
connecting any output to any input.

Some signals are bipolar, meaning they can have negative as well as
positive values. Negative signals light up the outputs just like positive
signals. In other words, the absolute value of the signal controls the
output brightness.

20

AMIOA>-

Signal Outputs

These are the tiny circles on the edge of the Patcher; the places from
which all patch cords start. They light up to show the current value of
the signal.

Signal Inputs and Modulation

These are the small dials bordering the Patcher; the places where all
patch cords end. Each signal input connects to just one dial. When you
connect a varying signal to an input, it modulates the dial’s signal just
as if you were moving the dial itself, but possibly at much faster rates.
Signal inputs are also knobs that let you adjust the amount of mod-
ulation applied to the dial. They do not display incoming signals them-
selves, because you can always see the effect in the dial. Some inputs
are bipolar, meaning the value by which they multiply the signal can be
either positive or negative. Like the bigger dials, each signal input dial

has a default value, and returns to this value when double-clicked.

21

For example, the exponential pitch inputs to 0SCILLATORS have a de-
fault value that corresponds to standard tuning when the pitch output
from the INPUT module is connected. Changing this input dial makes
nice music into weird tones very quickly. But by double-clicking to re-

store the default value, normalcy can be quickly restored if desired.

Envelope Trigger Input

Sumu’s ENVELOPES module can accept multi-channel trigger signals, and
it does so through a triangle-shaped input labeled “trig” You patch sig-
nals into this input just as described above. The big difference is that
there is no dial to set the level of trigger input—a signal either trig-
gers the intended response, or it doesn’t. For this reason, you’ll want
to make sure that the signals you patch into the trigger input are appro-
priately “triggery,” whether they’re purpose-built trigger signals like the
gate output of the INPUT module, or a particularly spiky control signal.

Patching

To make a patch cord, drag from an output to an input. As you drag,
you'll see a glowing line with an arrow at the end stretch from one to the
other. This shows the new connection you are making. This is a pretty
nifty thing, since such routing does not involve deciphering menus or
matrixes of things you can't see—you only need to look at what's on the
screen, which is everything. This ease of use is intended to keep Sumu
feeling like an instrument; something you can grab, pull, and mess with

fluidly.

22

You can make patch connections while holding a note down, and
they will affect the currently playing note just as patching a hardware
modular would. By holding a note and touching a patch cord end to
various signal outputs, you can even get intermittent glitchy sounds that

are reminiscent of playing with a live electrical circuit, or circuit bending.

Multitudes Within Multitudes

Almost every module panel in Sumu’s interface is really a controller for
as many copies of the module as there are voices. And each voice has
its own internal patcher. When a patch cord is made using the patcher
U], it is made simultaneously in the patcher within each voice. For ex-
ample, if you connect an output from PULSES to OSCILLATORS pitch, you
are connecting PULSES of voice 1 to pitch of voice 1, PULSES of voice 2
to pitch of voice 2, and so on. The INPUT module is the exception: it is
more like one module with a signal output for each voice. When a note is
played repeatedly, the INPUT module sends the note signal to each voice’s
patcher in turn to create polyphony.

Since they are controlled by the common patcher UL, and one set of
dials, the patch created for each voice is identical. But the signals that
flow through each voice’s patch can be very different. Thus, each voice is
separately controllable, in timbre, modulation, and all of its parameters.

A patch cord always takes on the color of the module it is coming
from. This helps you see at a glance what is going where. To modify
a patch cord after it's made, first you must select it. To select a single
cord, just click directly on it. When multiple cords are running over the
point you click, clicking repeatedly will rotate through all the cords at
that point. You can also select a group of cords in the patcher by clicking

on an empty part of the patcher, then dragging over multiple cords.

23

Removing or Repatching a Cable

When a cord is selected, its handles are visible. Handles appear as cir-
cles at either end of the cord—you can drag them to move the ends. If
multiple cords are selected starting or ending at the same place, clicking
the handle there will move all of the selected cords.

Typing the delete key should delete all the selected cords. You can
also delete a patch cord by dragging either end to a place with no input
or output. An X will appear instead of the handle at the end, and POOE
It's gone. Again, the changes happen in real time for any currently held

notes.

Mixing and Multing

If multiple cables go to a single input, the signals are mixed together.
The sum of all these signals is then multiplied by the input dial value.
If multiple cables go from one output to more than one destination, the
signal has been multiplied, or multed.

That’s not terribly important information, but it'’s good to have your
terminology straight, especially if you move on to other modular instru-

ments.

Unipolar vs. Bipolar

Some output signals, such as the envelope outputs, send only positive
values, and are unipolar. Others (like the pitch output on the INPUTmod-
ule) swing both positive and negative. These are bipolar. Negative and
positive signal values follow all of the same rules that real numbers do

in algebra.

24

SIGNAL
2r\5 lnfg;ts 0“13.‘}75
RANGE OF

MODVLATION|V
(NEGATWE)

¥ _— SIGNAL
— INPUT

1516naL SieNAL
muLTieLiep QTOUT

ToTwo
OUTPUTS |v

é{'_ éry EACH

WITH THEIR
OWN AMOUNT OF
MODVLATION!

For example, if a negative-valued signal is multiplied by a negative
signal input dial, its effect on the modulation will be positive.

Default Signal Routing

We've seen how easy it is to patch Sumu’s modules together, but it’s im-
portant to know that some connections in Sumu are pre-made for you.

The OSCILLATORS — GATES — SPACE — RES — OUTPUT signal path
is pre-routed. Small dials between some of these modules (that suspi-
ciously resemble the Signal Inputs we saw in the Patcher, if you ask me)
act as signal level controls.

So there’s our voice, pre-patched (to a degree!) Of course, the con-
trol and modulation modules on the top row can (nay, must) then be
brought into play at your discretion. In this way, you might visualize the
bottom row of modules as the troops, and the top row as their wildly-
gesticulating corporal. You and your DAW of choice, of course, are the
four-star generals in this analogy. Sorry, I think this granola might be

really old.

25

3 Sumu: Module by Module

This chapter will take you on a more detailed tour of the various modules

that compose Sumu, one by one.

The Header

Apart from reminding you which amazing plug-in you’re currently us-
ing, Sumu’s header mainly deals with patch access and management,
and user interface options. All the things that don’t affect the sound,
in other words. The big drop-down menu in the middle displays the

current patch name, and lets you select patches from a hierarchical list.

The patch menu

The drop-down patch menu has three main sections. The first section
holds the Copy, Paste, and Save commands. When you select “Copy to
clipboard,” the current patch is saved in a text-only format that you can
paste into other text documents.

This lets you send a patch to a friend in an email, or post it on a forum,

for example. “Paste from clipboard” does the reverse.

W 1) Aolo
g NN

\Q N

[e S

NI~ M

AP e A D
PA N—L P
[P TNV T
Fra = D
MWwAan v b

Vv Vide b

WA~ ML)
AW vy)
h-v A MAL)
e pan A)
P AN o)
A <At NITH

“Save as version” lets you quickly save a variation of the current patch
(with whatever tweaks you may have made since loading it) without
having to enter a new patch name. The new patch is named after the
current patch, followed by a revision number in brackets, incrementing
with each new version you save.

“Save” permanently updates the current patch with any parameter
changes you've made since loading the patch. This is, by definition, a
bit risky, unless you're sure of the changes you’ve made. In many cases,

>

you'll be safer using “Save as version” or “Save as..” when making in-
cremental changes to an existing patch.

“Save as..” brings up a file chooser from which you can create a new
file to save the patch to, or choose an existing one to overwrite. Patches
from the Audio Units version of Sumu are saved in the .aupreset for-
mat. This is a compressed XML format, compatible with Logic, Live and
other Audio Units-friendly applications. Patches from the VST version
of Sumu are saved in the .mlpreset format. This is the same XML format,
but uncompressed.

“Revert to saved” returns all parameters in the currently loaded patch
to their original, saved settings. You can also activate the Revert to Saved
feature by sending MIDI program change 128 to Sumu. This can be use-
ful when recording multiple takes of Sumu dial-twiddling as audio in
Ableton Live. In the Clip View for the MIDI clip you're working with, set
the “Program” parameter to 128. Each time that MIDI clip is launched
(with its launch button or a stop-and-start of the transport), Live sends
program change 128 to Sumu, reverting the patch to its saved value. This
gets you back to a consistent starting point for the next recording pass.

Below the commands are all of Sumu’s patches in two more sections:

the so-called “factory presets,” in directories all starting with “Sumu,”

28

followed by storage space for your own personal patches. Some user
presets, contributions from fellow Sumu users, are installed here by de-
fault.

Presets are all stored on your hard disk in the right place for user
data on your operating system of choice. For simplicity, factory presets
are stored in the same place as your own patches. In the unlikely (but
perfectly valid) scenario that you have multiple people with accounts on
the same computer all using Sumu, each person can have a copy of the

factory presets along with their own patches in their home directory.

Selecting patches via MIDI

If youd like to be able to load patches by sending MIDI program changes
to Sumu, create a folder titled “MIDI Programs” (note the capitalization
and the space between words) in one of the following locations, depend-

ing on your platform:
o Mac OS: /Library/Audio/Presets/Madrona Labs/Sumu
« Windows: (Your home directory)/UserData

Copy the patches youd like to access with MIDI program changes
into the “MIDI Programs” folder you've created. The folder is scanned
by Sumu on startup, and the presets in it are assigned numbers, in al-
phabetical order. To rearrange the programs, give them new names
so they are in a different alphabetical order. Send a program change to
Sumu that corresponds to your chosen patch, and Sumu will dutifully

switch to that patch.

Thanks, wonderful sound-crazed Sumu users,
for all your contributions!

On Mac OS, the user directory is in (your
home directory)/ Library / Audio / Presets. On
Windows, it’s in (your home directory) / User-
Data. If you're trying to copy your preset files
using Windows Explorer, be aware that even
though it’s the recommended path for user
data, Windows makes this directory invisible
by default. Likewise, Mac OS 10.7 Lion and
more recent versions hide the Library folder.
You can navigate to the Library folder in the
finder by choosing the “Go” menu and holding
down the option key.

If you look at the MIDI Programs folder in
Sumu’s preset menu, you will see each preset
listed, followed by its MIDI program change
number.

29

Global settings

Click the "..” button on the right of the header to access the global set-
tings. Show numbers lets you toggle the numeric displays that sit next
to each dial on or off. Animate dials lets you toggle the animated scope-
like displays inside the dials on or off. Reset editor size returns Sumu’s
window to its default size. The Input protocol menu lets you specify
whether you wish to use MIDI or OSC to control Sumu. The 0SC port
offset menu lets you specify the OSC port you wish to use for control.
For example, if your base OSC port is 6000, and you set the offset to 5,
Sumu looks for OSC control signals on port 6005.

Version and registration

The right top corner shows the version of Sumu you are running, as well
as your registration info. When you purchase a copy of Sumu for your-
self, we encode your name and account information into it. This shows
to you and the world that you are supporting what we do—from our
end it means we have agreed to help you out with Sumu if any problems

arise, and to maintain and improve it.

INPUT

This module receives all the MIDI data you send Sumu’s way, and turns
it into useful control signals that you can route to other modules with
the Patcher. If your controller were a basket of fresh fruit, you could
think of INPUT as a robot, blending juices the other modules thirst for.

30

Tuning menu

The menu up top selects the tuning table Sumu uses to map incoming
MIDI notes to specific frequencies. 12-equal, the default tuning, is short
for 12-tone equal temperament. It is the basis for most modern West-
ern music, but there are around a hundred others to try, included with
Sumu. There are too many scales to describe here, but if you open up
the .scl file for a scale you're interested in, you can read it as text, and
often find a bit more information that can lead to an article on the sub-
ject. As a start, we've selected some of the public-domain scales from
the Scala archive and sorted them into the tuning menu according to
what musical culture they’re from.

You can also add tuning files in .scl format to the scales directory
yourself, or make your own using the free software Scala, available at
http.//www.huygens-fokker.org/scala/.

Voice controls

« voices: Sets the number of voices of available polyphony, from 1-
16. The row of lights below illuminate and go dark one by one as
voices turn on and off, showing you how many voices you have left
to employ.

o unison: Toggles Unison mode on or off. Unison mode combines
all available voices into one monophonic voice, which can make for
some very big sounds. If multiple oscillators at exactly the same pitch
are added together, the result can sound quieter than a single oscilla-
tor because the waveforms cancel each other out. This is hardly ever

what anyone wants, so Sumu’s sound engine applies a small random

31

frequency drift to the pitch of each oscillator to maintain a nice, big

sound.

bend: Sets the amount that the pitch output varies when MIDI pitch
bend messages are received. It is calibrated in semitones from zero
to 24. Yes, 24-count-em-twenty-four semitones, which really means
a range of 48 (+- 24), or four octaves. Can you handle such power?

No? OK, then set it to 7, or something.

glide: Lets you bring a little or a lot of portamento (pitch glide be-
tween notes) to the party. Set it to the amount of time (in seconds)

you wish Sumu to take when sliding between notes.

drift: Applies your chosen amount of fluctuation to the pitch cen-
ter of each voice. Keep things strait-laced and steady, or add some
vintage smear to send a chill through your local ghosts.

mod #: Lets you select which MIDI continuous controller signal to

output through the Mod output. To use the mod wheel, set this to 1.

Outputs

32

pitch: This output turns incoming MIDI notes into a pitch signal
Sumu can use. When MIDI note A3 is played, the pitch signal output
is 0. This has the same result on a patcher input as when nothing is
connected. A4, an octave higher, outputs the value 1, and A2 outputs
-1.

Another 1 is added or subtracted for each octave up or down. This
scaling was chosen so that keyboard input maps naturally to all the

various control signals.

It’s like the 1.0 volt per octave standard of some
modular hardware, but there are no actual
volts involved. So we can call this just 1.0 per
octave.

In the patcher, input dials that can control pitch or frequency (such as
pitchin OSCILLATORS and level in GATES) are calibrated so that when
you connect a pitch input and set the default scaling (double-click),
they will track the same frequencies or intervals according to the 1.0

per octave standard.

gate: This output sends gate signals, with amplitude proportional to
the velocity of incoming notes. The signals maintain their value after
each key is released, allowing neat things like whacking on a drum
pad at different levels of velocity to set filter cutoff over time, and

such.

vox: This output sends a signal proportional to the number of each
active voice: 0.0 for voice 1, 1.0 for voice 2, and so on. This can be
used to quickly make changes to the patch that are different for each

voice.

after: 'This output sends polyphonic aftertouch data for each key,
added to the channel aftertouch value. There’s nothing like routing
aftertouch to a few parameters, and discovering a new dimension of
control over notes youre already holding down! Really, do it. It’s

awesome.

dxand dy: These outputs send continuously variable control signals,
set by whatever MIDI CCs (continuous control) you selected in the
hidden settings (available by clicking the three dots in the corner of
the module).

mod: This output sends a continuously variable control signal, set by
whatever MIDI CC you've specified with the mod # dial above.

Channel aftertouch sends one value for the
MIDI channel, and polyphonic (or poly key
pressure) sends a different value for each key.
Very few keyboards have true polyphonic
aftertouch, so we decided these two kinds of
aftertouch could share a signal output. If you
don’t have a keyboard controller with after-
touch, you can still use the output in Sumu by
sending messages from a MIDI knob or fader
controller.

33

o time: Whenever a voice is activated, this output sends out a signal
that starts low, and climbs ever higher. This signal is perfect to patch
into the time input on the PARTIALS module, to smoothly move the
“playhead” for the current voice across the partials map.

PARTIALS

This module give you access to “partials maps” (please excuse the clumsy
phrase—you’ll be seeing it a lot). These are powerful scrolls of control
data derived from audio analyzed by the included desktop app, Vutu.
This is the key to all kinds of creative resynthesis fun when patched into
the 0SCILLATORS module, and a source of deep richness when modulat-
ing other parts of Sumu.

Audio is interpreted as 64 channels of pitch, amplitude, and noisi-
ness values over time, one for each partial across the spectrum. This is
displayed in a sonogram-like graph, with time moving left to right, and
harmonic content visualized from top to bottom. Line weight implies
amplitude.

Each partial has a “playhead”, representing its current place in time
as a bright spot on the map. By default, all playheads are aligned in a
vertical column, referencing the same moment in time for all partials.
You’ll see the column move back and forth when you vary the time dial,
or when you play a note with the time output from INPUT patched into
PARTIALS timeinput. The playheads diverge from one another when you
plug in more complex multichannel signals (as from ENVELOPES, PULSES,
or from PARTIALS itself), each partial’s place in time moving on its own.

You'll see multiple playheads per partial when more than one voice

is active.

34

Noise values, while also present and usable for
each partial, are not shown on the display.

Choosing a partials map

A variety of useful maps are included. Open the partials menu under
the map display to select from the available factory and user maps.

To import .utu map files you've created with Vutu, click the ”.” button
in the upper right of the module, and select “Import Folder” Navigate
to your partials folder of choice, open it, and all maps inside will be

available in the map selector.

Controls and related inputs

o time: Sets the starting point in time for the “playheads” in the par-
tials map. When a one-channel-per-voice signal is patched in (such
as pitch or time from the INPUT module), the playheads for all partials
move across the map in a vertical column, one column per active
voice. With 64-channel signals connected, the playheads can move
independently. Signals entering the + input are added full-scale to
the attenuverted signals entering the main input. Signals patched
into the x input act as a multiplier for the signals entering the main

input.

o gate input: If you want to inject a little sanity into things and bring
this module into closer relations with incoming notes, patch the gate
out from /NPUT into this jack. With /oop turned on, this lets loops
play and repeat until you let go of the key, at which point playback
resumes normally. Connecting a signal here also negates the effect
of the slew control. All playheads warp back to their current starting
point when a gate is received.

o loop: Switch on to make the playheads zip back to the other end of

35

the map when they hit the end. Turn it off to mercifully let them
stop. Choosing gate mode turns on looping, only when you let go of
a note, the playheads continue to the end of the partial map instead
of turning off immediately. When the gate out from INPUTis patched
into this module’s gate input, looping only occurs while one or more

notes are held.

slew: Lets you introduce some lag in the movement of the playheads.
At zero, they update instantly when told to. This can come in handy

for intriguing tape or vinyl-like time-scrubbing sounds.

tilt: Sets the balance of noise amplitude across the spectrum. Turn
left of center to emphasize noise signals associated with lower-
frequency partials and dull those higher up. Turn right if it’s Op-

posite Day where you are.

blend: Boosts or cuts the intensity of noise that exits the noise output.

Outputs

36

amp: Outputs individual amplitude values for each partial at its cur-

rent playhead position in the partials map.

pitch: Outputs individual pitch values for each partial at its current
playhead position in the partials map.

noise: Outputs individual noisiness values for each partial at its cur-
rent playhead position in the you get the point, I'm sure.

To set the loop start and end points when
a loop mode is active, click and drag in the
partials map.

As a starting point, try patching each of these
outputs to the corresponding input on 0S-
CILLATORS. This will produce the baseline
“additive resynthesis” behavior when a partial
is loaded.

ENVELOPES

This module is (no points for guessing, Fred) an envelope generator. The
fun part is, there are 64 envelopes inside. The output contains one signal
for every partial, and they can differ (as we'll get to if you’ll kindly let me
continue, Fred). The display visualizes the relative shape and position of
the stacked envelopes.

This module creates ADSR shapes, so your old pals Attack, Decay,
Sustain and Release each have their own control.

To fire it off, send signals to its gate input, which pays attention to
all 64 channels from the module you connect, each dealing with a sepa-
rate envelope. It prefers sharp pings, such as gate signals from the INPUT
module, or squared-off blips from PULSES.

Other Controls

o scale: Choose vel to multiply all ADSR values by a value inverse to
incoming note velocity. Louder notes make faster envelopes. Choose
pitch to multiply all values by note pitch. Choose both to use both

signals. Choose off if you want none of this.

« delay: Shifts the start time relationship between the envelopes, across
the spectrum. The higher-frequency the partial affected, the more
delay is added as you turn this up.

o t=0: Turn on when employing the delay dial, if you want to ensure
zero delay is added to the lowest envelope. This makes the series of

envelopes fire as soon as a note is struck.

o curve: Choose between exponential (read: snappier) and linear

(read: un-snappier) envelope tendencies.

37

o hiscale: Scales the speed relationship between the envelopes, across
the spectrum. The higher-frequency the partial affected, the more its
envelope cycle speeds up as you turn this up. This can be handy for
introducing a low-pass-style contour across the sound.

 x vel: Turn on to multiply all ADSR output levels by incoming note

velocity. Louder notes make "louder” envelopes.

o level: Multiplies all envelope output amplitudes by the value you

choose.

Outputs

o all: The primary output, carrying all 64 channels of envelope signals.

o lo: A simpler signal, carrying only the envelope shape for the lowest
partial, mirrored across all 64 partial outputs.

o hi: Another simple signal, carrying only the envelope shape for the

highest partial, mirrored across all 64 partial outputs.

PULSES

On the right side, this module provides two synced pulse generators per
partial, each with its own shape, rhythm, and dynamic options.

This wouldn’t be super fun if you just hit them with a trigger and they
went BANG every time, so on the left, you'll find a probability engine
that lets you control when pulses should happen, for each partial.

It does this by applying shaped gradients of likelihood across the

spectrum. This lets you make modulations that focus on a certain fre-

38

To attain “normal” velocity sensitive note
volumes, patch this module into GATES and
turn on this toggle.

quency range. You could also, for example, use the pulses to trigger the

envelopes all at different times.

At the top, you see a visualization of the current pulse probability

shape for all partials, from lowest harmonics on the left to highest on

the right. This will all make more sense as you stroll through the control

descriptions.

Probability controls

hi scale: Scales the variation in pulse rates for each partial across
the spectrum. The higher-frequency the partial affected, the more
its rate increases as you turn up this dial.

quant: Controls how much the intervals between pulses are quan-
tized. At zero, pulses fire right away when commanded to by the
probability engine. At 1, pulses fire at 16th note intervals (four times

the bpm setting, which can be interpreted as quarter-notes).

noise: Adds noise to the pulse rate value, varying it randomly. This
effect can then be reversed smoothly as you turn the control back
down, returning rates to the default. The noise comes prior to quan-
tization, so with quant full up, pulses still fire at 16th notes, but

randomly shifted around.

shape: Sets the basic form of the probability curve, with choices like
“gauss curve” and “sawtooth?”

free/sync: Lets pulses run free, or rhythmically locked to the host
clock.

bpm: Adjusts the time interval between pulse cycles. By default, all

pulse generators fire in sync (where probability allows) according to

39

this setting, but patcher input and/or hi scale goosing can differen-
tiate pulse times per partial.

center: Sets the center of the probability curve. Turn left to focus
things on lower partials, and right for higher.

width: Hear me out—this sets the width of the curve, letting you fo-
cus probabilities around the center point, or distribute them more
liberally to either side.

x prob: Lets you increase pulse probability, for all partials manually,
or individually with patcher inputs. Heightened probabilities are still
affected by the shape of the curve.

Pulse generator controls

40

envs 1 and 2 Sets pulse shape for each generator, with choices like

ramp, rectangle, and exponential.

rhythms 1 and 2: Controls both the number of output pulses per
cyclke, and the pattern of each group of pulses. Setting these to dif-
ferent values for each generator gets you crazy polyrhythms.

amps 1 and 2: Sets the amplitude behavior for each generator. Set to
full, all pulses are the same level. Set to x prob, the volume scale is
multiplied by the probability curve. Set to x rand, pulse levels vary
per cycle, at random. Set to prob, pulse levels are affected by the
probability level for each partial, according to the curve.

levels 1 and 2: Scales pulse level for each generator. Accepts multi-

channel control signals for differing settings for each partial.

For example: If you set this to “ee-“ then every
cycle is divided into three output pulses, of
which the first two play and the third is silent.

Outputs

o all 1 and 2: The primary outputs from the shape generators, each car-
rying 64 channels of pulse signals.

o lo: A simpler signal from shape generator 1, carrying only the pulse

signal for the lowest partial, copied across all 64 partials.

o hi: Another simple signal from shape generator 1, carrying only the

pulse signal for the highest partial, copied across all 64 partials.

SCOPE

This module gives you a handy way to visualize all kinds of multi-
channel signals. Patch something in from any module in the upper area
to see what it’s doing. 64 stripes show signal level per channel, over time.

To switch between the default scope view and an alternate ”bar chart”

view, hit the ”.”” button and change the mode.

OSCILLATORS

This module is the audible heart of Sumu—its powerful oscillator bank.
All 64 partials get the building blocks of a basic FM synth voice. One
“carrier” oscillator which creates the primary signal, plus a "modulator”
osc that can shape and mangle the carrier oscillator’s frequency curve (as
well as acting as its own sound source, if you like). All this, and a noise
generator, too.

All the juicy parameters here can be controlled individually per par-
tial, under the influence of beefy 64-channel control signals from the

modules above.

41

Controls

o offset: Sets a linear frequency offset between the carrier and modu-
lator oscillators, distinct from the comparative offset introduced by

the ratio control.

o ratio: Sets a comparative offset between carrier and modulator fre-
quency. Handy for all manner of classic FM noises, in conjunction

with raised mod index settings.
« noise: Adds noise to the mod oscillator’s frequency.

o mod index: Sets the amount of influence the mod oscillator has on
carrier oscillator frequency, scaled by ratio.

o amp: Scales the output level of the carrier oscillators.
o pitch: Sets the pitch of the carrier oscillators.
« noise: Sets the noisiness of the carrier oscillators

o mod and carrier out level: These two small dials on the border be-
tween this module and GATES set the output level of the mod and
carrier oscillators. To hear “purer” FM effects, turn down mod level
and let the carrier oscillators ring through alone.

GATES

The GATES module is a dynamic volume control, akin to the VCAs (Volt-
age Controlled Amplifiers) found in modular synths. Its inputs comes
from the 0SCILLATORS module, with the carrier and mod oscillator sig-

nals for each partial blended according to the small knobs between the

42

The amp pitch, and noise inputs on the carrier
side love to receive the same-named outputs
from PARTIALS. This sets up the crucial pitch,
level, and timbre relationship between the an-
alyzed audio you choose and the resynthesized
sound you hear.

two modules. Its outputs are sent to the SPACE module. You send GATES
control signals, typically envelopes, and it nicely increases and decreases
the amount of input signals passed to its outputs. The control signals you
send flow through a vactrol emulation, this time with a settable decay,
which opens up a world of cool, percussive envelopes.

GATES is an important tool for sculpting the dynamic profile of
Sumu’s sound, and it’s pretty magical beyond that. Magic comes into
play when you flip it into LPG (Low Pass Gate) mode and synth-bongo
all night long.

Controls

o level: This dial sets the static level of this module’s level attenuator.
Signals from the /evel input modulate the level, as well. For normal,
keyboard-like playing, youll probably keep this control at zero, so
only incoming envelope signals triggered by key presses affect the
sound’s volume. For drones or reverse-enveloped sounds, try raising

it higher.

o lopass: This toggle turns on low-pass gate (LPG) mode. In LPG
mode, the gate’s gain-changing cell is replaced by a low-pass filter,
the frequency of which is modulated by the level signal. The modu-
lation afforded by the vactrol emulation makes percussive envelopes

with a very particular sonic signature.

o decay: Sets the decay constant of the vactrol algorithm. Atlow decay
settings, the GATES will follow incoming mod signals very snappily.

At higher settings, the decay of the vactrol rings out more and more.

43

SPACE

This module is, in the simplest terms, a panner and mixer for all of the
partials. Each partial enters, and is placed in space according to rules
you establish. Then, every single one of them can move around in what-
ever way pleases you most, and can be influenced by other modules,
too.

To keep this from straying into God’s own giant Flying Faders con-
sole” levels of complexity, we provide two helpful tools—patterns of
position and motion tendency we term home and field.

Each home preset places each partial in different default positions
within a theoretical 3D space, as visualized in the display.

Each field preset offers a distinct 3D vector field, providing a direc-
tional tendency for each point in that 3D space (x, y, z). This can lead

to patterns of movement akin to tornadoes, waves, rivers, and so on.

Controls and inputs

o reset: Patch trigger-y signals into this input. Each blip resets the af-
fected partial back to its default home position. Or hit the button to

reset all partial positions.

 speed: Sets the rate at which each partial moves according to the
directional tendency dictated by the current field preset.

« noise: Adds noise to the vector field, making partials move in jittery

ways.

o theta: Swivels the 3d sound field around, taking all partials’ positions
with it.

44

In the end, each partial’s position in 3D space
is used to spatialize it across the stereo field.

« x: Offsets each partial’s position on the X axis.
o y: Offsets each partial’s position on the Y axis.
o z: Offsets each partial’s position on the Z axis.

« room selector: Lets you choose between an anechoic space with no

wall reflections, and a selection of rooms with natural reflections.

« home: Lets you select the home pattern of your choice; the starting

place in space for each partial.
o plane: Rotates your chosen home pattern on its axis.
o scale: Changes the size of your chosen home pattern in space.

o field: Lets you select a vector field to affect the spatial position of each

partial over time.

o far: Lets you choose what happens to partials when they go out of
bounds. Choose bye to let them go very far away. Choose Home to
make them return to their home position. Choose flip to make them
re-enter the space from the opposite side. Choose rand to place way-

ward partials at a random position.
o rotate: Rotates your chosen field pattern within the space.

The output from this module is mixed down to stereo and handed

off to RES. No more 64-channel madness from this point on.

45

RES

This module acts as an overall EQ and color-box for the big bad signals
you create. It’s an analog-modeled four-pole filter with serious charac-

ter, especially when driven hard.

Controls

o freg: Sets the center frequency for the filter. The input on the left has
a preset scale that corresponds to ”1 volt per octave,” allowing you to
send pitch signals to the filter for tuned whistle-y fun. The input on

the right has an attenuverter, opening up other uses.

o g: Adjusts the resonance for the filter, creating a peak in energy

around the center frequency.

« mode: Selects the shape for the filter, with the options lowpass, high-
pass, bandpass, and thru (no filtering).

ouTPUT

This module lets you put the final polish on your sound before it’s sent
out into the cold, cruel world. Here, you’ll find a master level control, a
toggle-able soft clipping circuit, and a nifty little stereo oscilloscope that

shows you the waveforms you’re making.

Controls

o level: Sets the overall output level of Sumu. Note that this control also
has an input, which lets it act like a VCA (voltage controlled ampli-

46

fier) when fed a control signal. This can come in handy for reining
in sounds, such as those with a lot of filter resonance.

clip: Turn this option on to soft-clip loud signals before they have a

chance to clip the output in a way that sounds less nice.

The soft clipping will only kick in audibly when the outputs from the
RES module are quite loud. For example, most of the factory patches
are set so that they sustain at approximately -12dB. It's not until play-
ing four voices simultaneously that there will be enough signal to clip
the output. With clipping off, this four-voice signal would be at 0dB.
With clipping engaged, the sum will be smoothly turned down to
around -3dB. Of course, if you have your favorite dynamics proces-
sor that’s part of your trademark sound, by all means turn our clipper
off and use your own. We won'’t be offended.

47

4 Vutu: Your Audio Cartographer

While Sumu’s PARTIALS module is all about wringing the expressive
synth-soul from your choice of recordings, you can’t simply drop au-
dio right into it like you might expect. Your files must first be analyzed.
This happens outside your host, in a dedicated app provided with your
copy of Sumu, called Vutu.

Finding Vutu

Vutu will be updated separately from Sumu, so it’s a separate download.
To get it, go to madronalabs.com, and make your way to the bottom
of the Sumu page. There should be both Mac and Windows installers
there. If you are technically able and enjoy pain and misery, you can
also compile Vutu from its very source code. That code is available at

github.com/madronalabs/vutu.

Charting the Course

All set? Now let’s try out Vutu and see how it works.

For the most part, this is how you’ll use Vutu:

1. openyour source audio file

2. Temporarily turn up fund. volume to hear the pitch reference tone,
playyour audio file, and set the fundamentalfrequency to match your
audio

3. Adjust the analysis settings to suit your signal, if needed
4. analyze the audio to create your partials map

5. synthesize your partials map back to audio

6. play the resynthd audio, to see how it sounds

7. Rinse and repeat until you love what you hear

8. export the partials map and import into Sumu

The app contains a microcosm of Sumu’s signal path. When you hit

synthesize to prove out a new partials map, its pitch, amplitude, and

50

noisiness signals are used to drive a set of oscillator pairs just like Sumuss.
The resynth-esized sound is captured so you can hear it, or even export

it for use elsewhere, if you're so inclined.

Controls

o resolution: Sets the minimum frequency between analyzed partials,
in Hertz. Thus, with a sound with a 100Hz fundamental, setting res-
olution to 100Hz or less would allow the harmonics at 100, 200, 300
and son on to be captured. Setting it higher would force the analysis

to skip some partials, and make a weirdly hollow sound.

o window width: Sets the frequency in Hz of the analysis window.
Higher frequencies tend to work better for rhythmic, transient

sounds, while lower frequencies work better for sustained sounds.

o hiand lo cut: Excludes your choice of frequency range from the low
and high end of the spectrum before analyzing. Can be used for
cleaning up unwanted subs or grime from signals, or for focusing

analysis on a certain frequency band.
* noise width:

o amp floor: Acts a bit like a high-pass filter, but for amplitude. The
higher you turn it, the more quiet parts of the sound are stripped

away.
o freq drift:

« fundamental: Sets the "home frequency” of the partials map you cre-

ate, so its pitch info will play ”in tune” with incoming note values

51

within Sumu. This control also sets the frequency of the built-in ref-
erence oscillator. Tune this while letting your source audio play, until
the reference tone matches the fundamental pitch you hear in your

audio.

o fund. volume: Sets the volume of the internal reference oscillator.
Turn it up so you can hear it while setting fundamental pitch, then

turn it down so you don’t go crazy.

« output volume: Sets the output volume of Vutu, for your listening
comfort.

IMPORTANT: Sumu can play back a maximum of 64 bandwidth-
enhanced partials per voice. To reproduce your sound in Sumu, the
maximum active partials at any one time in the exported analysis must
be under 64. You can see this value in the status bar in Vutu, directly
under the resynthesis display.

52

A Frequently asked questions

Why “Sumu?”

It's the Finnish word for fog,” which feels evocative of the sonic spaces

it can create.

Where is it? I installed it but I can’t find it in the Start Menu / Dock /
Applications.

Sumu is a VST and Audio Units format plugin. To run it, you need a
VST or AU host on your computer. Please see the Introduction to this
manual for more info, and try asking on our web forums if you need

advice finding a host to use.

Is Sumu supposed to sound like this?

Probably, unless you hear an abrasive series of glitches. Heres a good
way to check that Sumu is functioning well: select the “default” patch
from the factory patches section of the patch menu. If needed, turn up
the voices control to get all of the voices running.

Now, turn the /eveldial in the GATE module up alittle bit. You should

hear a mellow, slowly shifting drone. If there are any glitches in the au-
dio, they will be readily apparent.

I hear glitches, how do I get rid of them?

The most common thing that needs adjustment is buffer size. Your host
gives you a control somewhere over the size of the small buffers it fills up
with calculations, over and over, to generate a steady stream of sound. If
this buffer is too small, the calculation takes much longer, and even the
fastest computer won't be able to keep up. Try turning the buffer size up
to some number greater than 256. This should let Sumu run as fast as
possible.

In Ableton Live, the buffer size control is under ”Settings... / Audio
/ Buffer Size” For other hosts, it's probably something similar: please
check your host’s manual for details.

If the buffer size made no difference, it’s possible that your computer
is not fast enough to run all of Sumu’s voices. You can try turning the
voices control down to 1, and turning up the audio again on the default
patch. If this helps, then it’s almost certainly the case that CPU power
is the issue. You can try adding voices one by one to hear where the
problems come up.

If you are running the 64-bit version of Sumu in a 64-bit VST or AU
host, you can expect to get around a 10% performance boost compared
to the 32-bit version.

Finally, turning off animations with the Animate dials global setting
or hiding the Sumu interface altogether will increase performance, for
those times you are trying to squeeze out that last few percent and get
your mixdown to happen.

Performance is affected by many, many variables including choice of

54

audio interface, drivers, host application and OS version. We can only
give guidelines here. To tap into the collective wisdom of Sumu users
on this topic, visit the ongoing discussions at madronalabs.com.

I bought one license for Sumu. Can I use it on my Mac and my PC too?

Yes. Sumu’s license is very simple, but different from some you may
have encountered. One purchase gives you a license for both Mac and
Windows. You are restricted to running Sumu on one computer per li-
cense at any one time. If you want to run the software on more than one

computer at a time, you must buy a licensed copy for each computer.

How does your copy protection work?

Sumu does not have copy protection. Copy protection always creates
hassles for legitimate users. Our approach is different.

What we do is stamp each copy of Sumu securely with user data, con-
sisting of your name and a unique ID. This is your own copy of Sumu,
and you are free to make as many copies as you want. But do so care-
fully. When you run a copy, it may unobtrusively check to ensure that
this data is intact and no other copies with the same user data are run-
ning anywhere. Since another copy running somewhere else could stop
yours from running, we assume you will be careful about where your
watermarked copies go.

We imagine, for example, that you might put a copy on your studio
machine as well as your home machine, or on a USB stick to take to a

mixdown session.

Can I load presets made in Sumu 1.0 in version 1.2 or 1.3?

Yes. Sumu presets will always be compatible with future versions, even

55

as we add controls and features.
On the other hand, if you try to load newer presets in an older version

of Sumu, you will get errors.

I'm not playing any notes, so why is Sumu eating my CPU time?

Sumu has free-running oscillators and processors that are updated
whenever your DAW is processing audio, so those eat up CPU at a rate
that matches your chosen number of voices in the INPUT module. Just
like on a modular synth, you can simply turn up the /eve/ dial on GATES

to hear the oscillators, even if no notes are playing.

How do I make Sumu’s dials change in response to MIDI data?

The INPUT module’s mod output turns MIDI continuous controllers into
continuous signals, which can then be sent to any destination in the
patcher. This is a very flexible way of using MIDI controller data, be-
cause you can route and scale it quickly as a signal. The mod cc# dial
sets the control number sent to the Mod output.

Sumu does not provide its own interface for changing a dial’s posi-
tion directly from a MIDI controller, often referred to as MIDI learn.
Most plugin hosts, such as Live, Logic and Numerology, provide good
interfaces for MIDI learn that work well with Sumu. Please consult the

manual for your host for details.

56

	Introduction
	A Quick Overview
	Fog Farmer's Almanac

	Parallel Pathways in Perpetuity
	The Widest Highway

	Getting to Know Sumu
	First Things First
	An Annotated Map of Sumu
	Presets
	Using Dials
	Using the Patcher

	Sumu: Module by Module
	The Header
	input
	partials
	envelopes
	pulses
	scope
	oscillators
	gates
	space
	res
	Output

	Vutu: Your Audio Cartographer
	Frequently asked questions

